الاستقراء الرياضي (بالإنجليزية: Mathematical induction) هو أحد أنواع البرهان الرياضي تستخدم عادة لبرهنة أنّ معادلة أو متباينة ما صحيحة لمجموعة لانهائية من الأعداد، كالأعداد الصحيحة. يعتمد البرهان على مبدأ وقوع أحجار الدومينو، ويتم على مرحلتين: في الأولى، يبرهن أنّ أوّل رقم في المجموعة يحقّق المطلوب، وفي الثانية نفرض أنّ المطلوب يتحقّق لعدد ما من المجموعة، ونبرهن، جبريًا، مثلاً، أنّه يتحقّق أيضًا للعدد الذي يليه في المجموعة استنادًا على الفرض وعلى الأساس.
يذكر، لمنع حصول التلابسات، أنّ الاستقراء الرياضي يختلف عن الاستنتاج الاستقرائي - فالأخير لا يعتبر برهانًا كافيًا ودقيقًا في عالم الرياضيات. الأصح هو القول أنّ الاستقراء الرياضي هو ضرب من الاستنتاج الاستدلالي